Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.

Identifieur interne : 001A06 ( Main/Exploration ); précédent : 001A05; suivant : 001A07

Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.

Auteurs : M C Cruz [États-Unis] ; A L Goldstein ; J. Blankenship ; M. Del Poeta ; J R Perfect ; J H Mccusker ; Y L Bennani ; M E Cardenas ; J. Heitman

Source :

RBID : pubmed:11600372

Descripteurs français

English descriptors

Abstract

Candida albicans and Cryptococcus neoformans cause both superficial and disseminated infections in humans. Current antifungal therapies for deep-seated infections are limited to amphotericin B, flucytosine, and azoles. A limitation is that commonly used azoles are fungistatic in vitro and in vivo. Our studies address the mechanisms of antifungal activity of the immunosuppressive drug rapamycin (sirolimus) and its analogs with decreased immunosuppressive activity. C. albicans rbp1/rbp1 mutant strains lacking a homolog of the FK506-rapamycin target protein FKBP12 were found to be viable and resistant to rapamycin and its analogs. Rapamycin and analogs promoted FKBP12 binding to the wild-type Tor1 kinase but not to a rapamycin-resistant Tor1 mutant kinase (S1972R). FKBP12 and TOR mutations conferred resistance to rapamycin and its analogs in C. albicans, C. neoformans, and Saccharomyces cerevisiae. Our findings demonstrate the antifungal activity of rapamycin and rapamycin analogs is mediated via conserved complexes with FKBP12 and Tor kinase homologs in divergent yeasts. Taken together with our observations that rapamycin and its analogs are fungicidal and that spontaneous drug resistance occurs at a low rate, these mechanistic findings support continued investigation of rapamycin analogs as novel antifungal agents.

DOI: 10.1128/AAC.45.11.3162-3170.2001
PubMed: 11600372
PubMed Central: PMC90798


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.</title>
<author>
<name sortKey="Cruz, M C" sort="Cruz, M C" uniqKey="Cruz M" first="M C" last="Cruz">M C Cruz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, The Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, The Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710</wicri:regionArea>
<wicri:noRegion>North Carolina 27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, A L" sort="Goldstein, A L" uniqKey="Goldstein A" first="A L" last="Goldstein">A L Goldstein</name>
</author>
<author>
<name sortKey="Blankenship, J" sort="Blankenship, J" uniqKey="Blankenship J" first="J" last="Blankenship">J. Blankenship</name>
</author>
<author>
<name sortKey="Del Poeta, M" sort="Del Poeta, M" uniqKey="Del Poeta M" first="M" last="Del Poeta">M. Del Poeta</name>
</author>
<author>
<name sortKey="Perfect, J R" sort="Perfect, J R" uniqKey="Perfect J" first="J R" last="Perfect">J R Perfect</name>
</author>
<author>
<name sortKey="Mccusker, J H" sort="Mccusker, J H" uniqKey="Mccusker J" first="J H" last="Mccusker">J H Mccusker</name>
</author>
<author>
<name sortKey="Bennani, Y L" sort="Bennani, Y L" uniqKey="Bennani Y" first="Y L" last="Bennani">Y L Bennani</name>
</author>
<author>
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11600372</idno>
<idno type="pmid">11600372</idno>
<idno type="doi">10.1128/AAC.45.11.3162-3170.2001</idno>
<idno type="pmc">PMC90798</idno>
<idno type="wicri:Area/Main/Corpus">001A02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A02</idno>
<idno type="wicri:Area/Main/Curation">001A02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A02</idno>
<idno type="wicri:Area/Main/Exploration">001A02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.</title>
<author>
<name sortKey="Cruz, M C" sort="Cruz, M C" uniqKey="Cruz M" first="M C" last="Cruz">M C Cruz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, The Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, The Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710</wicri:regionArea>
<wicri:noRegion>North Carolina 27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, A L" sort="Goldstein, A L" uniqKey="Goldstein A" first="A L" last="Goldstein">A L Goldstein</name>
</author>
<author>
<name sortKey="Blankenship, J" sort="Blankenship, J" uniqKey="Blankenship J" first="J" last="Blankenship">J. Blankenship</name>
</author>
<author>
<name sortKey="Del Poeta, M" sort="Del Poeta, M" uniqKey="Del Poeta M" first="M" last="Del Poeta">M. Del Poeta</name>
</author>
<author>
<name sortKey="Perfect, J R" sort="Perfect, J R" uniqKey="Perfect J" first="J R" last="Perfect">J R Perfect</name>
</author>
<author>
<name sortKey="Mccusker, J H" sort="Mccusker, J H" uniqKey="Mccusker J" first="J H" last="Mccusker">J H Mccusker</name>
</author>
<author>
<name sortKey="Bennani, Y L" sort="Bennani, Y L" uniqKey="Bennani Y" first="Y L" last="Bennani">Y L Bennani</name>
</author>
<author>
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</analytic>
<series>
<title level="j">Antimicrobial agents and chemotherapy</title>
<idno type="ISSN">0066-4804</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Candida albicans (drug effects)</term>
<term>Candida albicans (genetics)</term>
<term>Cryptococcus neoformans (drug effects)</term>
<term>Cryptococcus neoformans (growth & development)</term>
<term>Culture Media (MeSH)</term>
<term>DNA Primers (MeSH)</term>
<term>Drug Resistance (MeSH)</term>
<term>Fungal Proteins (drug effects)</term>
<term>Fungal Proteins (genetics)</term>
<term>Immunosuppressive Agents (pharmacology)</term>
<term>Mutagenesis (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (drug effects)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Sirolimus (analogs & derivatives)</term>
<term>Sirolimus (pharmacology)</term>
<term>Tacrolimus Binding Protein 1A (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Candida albicans (effets des médicaments et des substances chimiques)</term>
<term>Candida albicans (génétique)</term>
<term>Cryptococcus neoformans (croissance et développement)</term>
<term>Cryptococcus neoformans (effets des médicaments et des substances chimiques)</term>
<term>Immunosuppresseurs (pharmacologie)</term>
<term>Milieux de culture (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (effets des médicaments et des substances chimiques)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Protéine 1A de liaison au tacrolimus (effets des médicaments et des substances chimiques)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines fongiques (effets des médicaments et des substances chimiques)</term>
<term>Protéines fongiques (génétique)</term>
<term>RT-PCR (MeSH)</term>
<term>Recombinaison génétique (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sirolimus (analogues et dérivés)</term>
<term>Sirolimus (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Tacrolimus Binding Protein 1A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Immunosuppressive Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Cryptococcus neoformans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Candida albicans</term>
<term>Cryptococcus neoformans</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Candida albicans</term>
<term>Cryptococcus neoformans</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéine 1A de liaison au tacrolimus</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Candida albicans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cryptococcus neoformans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Candida albicans</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Immunosuppresseurs</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Culture Media</term>
<term>DNA Primers</term>
<term>Drug Resistance</term>
<term>Mutagenesis</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Recombination, Genetic</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Milieux de culture</term>
<term>Mutagenèse</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>RT-PCR</term>
<term>Recombinaison génétique</term>
<term>Résistance aux substances</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Candida albicans and Cryptococcus neoformans cause both superficial and disseminated infections in humans. Current antifungal therapies for deep-seated infections are limited to amphotericin B, flucytosine, and azoles. A limitation is that commonly used azoles are fungistatic in vitro and in vivo. Our studies address the mechanisms of antifungal activity of the immunosuppressive drug rapamycin (sirolimus) and its analogs with decreased immunosuppressive activity. C. albicans rbp1/rbp1 mutant strains lacking a homolog of the FK506-rapamycin target protein FKBP12 were found to be viable and resistant to rapamycin and its analogs. Rapamycin and analogs promoted FKBP12 binding to the wild-type Tor1 kinase but not to a rapamycin-resistant Tor1 mutant kinase (S1972R). FKBP12 and TOR mutations conferred resistance to rapamycin and its analogs in C. albicans, C. neoformans, and Saccharomyces cerevisiae. Our findings demonstrate the antifungal activity of rapamycin and rapamycin analogs is mediated via conserved complexes with FKBP12 and Tor kinase homologs in divergent yeasts. Taken together with our observations that rapamycin and its analogs are fungicidal and that spontaneous drug resistance occurs at a low rate, these mechanistic findings support continued investigation of rapamycin analogs as novel antifungal agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11600372</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0066-4804</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>45</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2001</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Antimicrobial agents and chemotherapy</Title>
<ISOAbbreviation>Antimicrob Agents Chemother</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.</ArticleTitle>
<Pagination>
<MedlinePgn>3162-70</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Candida albicans and Cryptococcus neoformans cause both superficial and disseminated infections in humans. Current antifungal therapies for deep-seated infections are limited to amphotericin B, flucytosine, and azoles. A limitation is that commonly used azoles are fungistatic in vitro and in vivo. Our studies address the mechanisms of antifungal activity of the immunosuppressive drug rapamycin (sirolimus) and its analogs with decreased immunosuppressive activity. C. albicans rbp1/rbp1 mutant strains lacking a homolog of the FK506-rapamycin target protein FKBP12 were found to be viable and resistant to rapamycin and its analogs. Rapamycin and analogs promoted FKBP12 binding to the wild-type Tor1 kinase but not to a rapamycin-resistant Tor1 mutant kinase (S1972R). FKBP12 and TOR mutations conferred resistance to rapamycin and its analogs in C. albicans, C. neoformans, and Saccharomyces cerevisiae. Our findings demonstrate the antifungal activity of rapamycin and rapamycin analogs is mediated via conserved complexes with FKBP12 and Tor kinase homologs in divergent yeasts. Taken together with our observations that rapamycin and its analogs are fungicidal and that spontaneous drug resistance occurs at a low rate, these mechanistic findings support continued investigation of rapamycin analogs as novel antifungal agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cruz</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, The Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goldstein</LastName>
<ForeName>A L</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blankenship</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Del Poeta</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perfect</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCusker</LastName>
<ForeName>J H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bennani</LastName>
<ForeName>Y L</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 AI007392</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K01 CA77075</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI41937</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-AI07392-10</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI44975</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI044975</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antimicrob Agents Chemother</MedlineTA>
<NlmUniqueID>0315061</NlmUniqueID>
<ISSNLinking>0066-4804</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007166">Immunosuppressive Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022061">Tacrolimus Binding Protein 1A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003455" MajorTopicYN="N">Cryptococcus neoformans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007166" MajorTopicYN="N">Immunosuppressive Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="Y">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022061" MajorTopicYN="N">Tacrolimus Binding Protein 1A</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11600372</ArticleId>
<ArticleId IdType="doi">10.1128/AAC.45.11.3162-3170.2001</ArticleId>
<ArticleId IdType="pmc">PMC90798</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 1999 Sep;43(9):2148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10471556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1999 Oct;12(4):583-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Jul;134(3):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chemother. 1999 Dec;11(6):504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Mar;44(3):739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2000 Feb;53(2):158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2000 Jul 3;10(13):1405-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Pharmacother. 2000 Sep;34(9):1044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10981252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 1;14(21):2689-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2001 Jan;59(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11135052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1978 Jun;31(6):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;154:164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3323810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Apr 1;113(1):125-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1563628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Mar;13(3):1962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8441425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Mar;175(5):1405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8444802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplantation. 1994 Jun 27;57(12):1689-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7517076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 15;13(24):5944-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7529175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 5;377(6548):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1995 Aug;39(8):1784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7486919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 1;10(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jul 12;273(5272):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Jun 30;12(8):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8813764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1996 Feb;40(2):279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8834867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Jan;41(1):156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1997 Jan;175(1):222-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Feb;41(2):331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9021188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Nov 19;75(4):805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8242751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2000 Jan;44(1):143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 15;16(10):2576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1997 Jul 3;337(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9203426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Nov;41(11):2471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1995 Jul;2(7):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1998 Apr;11(2):382-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Apr 30;14(6):565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9605506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1998 May;51(5):487-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1998 Oct;42(10):2495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9756747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1998 Nov;42(11):2898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9797223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Mar;181(6):1868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Apr;15(6):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jun;19(6):4101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2531-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bennani, Y L" sort="Bennani, Y L" uniqKey="Bennani Y" first="Y L" last="Bennani">Y L Bennani</name>
<name sortKey="Blankenship, J" sort="Blankenship, J" uniqKey="Blankenship J" first="J" last="Blankenship">J. Blankenship</name>
<name sortKey="Cardenas, M E" sort="Cardenas, M E" uniqKey="Cardenas M" first="M E" last="Cardenas">M E Cardenas</name>
<name sortKey="Del Poeta, M" sort="Del Poeta, M" uniqKey="Del Poeta M" first="M" last="Del Poeta">M. Del Poeta</name>
<name sortKey="Goldstein, A L" sort="Goldstein, A L" uniqKey="Goldstein A" first="A L" last="Goldstein">A L Goldstein</name>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
<name sortKey="Mccusker, J H" sort="Mccusker, J H" uniqKey="Mccusker J" first="J H" last="Mccusker">J H Mccusker</name>
<name sortKey="Perfect, J R" sort="Perfect, J R" uniqKey="Perfect J" first="J R" last="Perfect">J R Perfect</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Cruz, M C" sort="Cruz, M C" uniqKey="Cruz M" first="M C" last="Cruz">M C Cruz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11600372
   |texte=   Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11600372" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020